
T.Ramya Krishna Int. Journal of Engineering Research and Applications                      www.ijera.com 

ISSN : 2248-9622, Vol. 4, Issue 6( Version 4), June 2014, pp.06-11 

 www.ijera.com                                                                                                                                6 | P a g e  

 

 

 

Noise Cancellation by Combining the Discrete Wavelet Transform 

With the Wiener Filter 
 

T.Ramya Krishna*, C.Rajeswari** 
*M.Tech, Communication and Signal Processing, G. Pulla Reddy Engineering College (Autonomous), Kurnool, 

A.P 

** M.Tech, Assistant Professor, Dept. Of ECE, G. Pulla Reddy Engineering College (Autonomous), Kurnool, 

A.P. 

 

ABSTRACT 
In this study by using noise-free signal estimation the reduction of noise in the image is being proposed. The 

dyadic stationary wavelet transform is used for both the wiener filter and in estimating the noise free signal. 

Finding a suitable filter bank and choosing other parameters of the wiener filter with respect to obtained signal-

to-noise ratio (SNR) is our goal. Testing was being performed on the standard images corrupted with the noise. 

The artificial interference was created from the generated white Gaussian noise, whose power spectrum was 

modified according to a model of the power spectrum of the image. The adaptive setting parameters of the 

filtering according to the level of interference in the input signal are being used to improve the filtering 

performance. The average SNR of the whole test database is increased by about 10.6 dB. The better results can 

be provided by using the provided algorithm than the classic wavelet wiener filter  
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I. INTRODUCTION 
A digital image is a numerical representation of a 

two dimensional image .Image acquired through 

modern sensors may be contaminated by a variety of 

noise sources. By noise we refer to stochastic 

variations as opposed to deterministic distortions 

such as shading or lack of focus. So removal of noise 

is considered as the important in the image 

processing. Linear filtering is not suitable for the 

suppression of the broadband noise unlike the narrow 

band interference because it leads to significant 

cropping of the edges of the pixels in the image. 

Noise spectrum is predominant at the higher 

frequencies and overlaps significantly with the image 

spectrum. Therefore it is difficult for automatic 

interpretation, following accurate detection of 

characteristics of the image. 

Compared to linear filtering, the discrete wavelet 

transform can increase effectiveness of suppression 

of the noise in the image. WT decomposes the signal 

so that the highest bands contain noise and some 

additive components of the image and the lower 

bands contain more components of image. Depending 

on the estimated level of the interference in the 

transform coefficients, the signal can be filtered by 

appropriate adjustments in the transform coefficients. 

The wavelet wiener filtering is being focused in this 

paper. Dyadic SWT is used in the wiener filter and 

also in the estimation of a noise-free signal. Finding 

most appropriate filter bank and to recommend other 

parameters of the wiener filter is our goal. Selection 

of appropriate values of the parameters was  

 

performed to maximize the average resulting signal-

to-noise ratio (SNR) for all the signals tested. We 

confirmed that the appropriate values of these 

parameters depend on the noise level or SNR. A 

general scheme of the filter, consisting not only of 

the own filter but also of the estimation of a noise-

free signal, was extended with automated estimation 

of the SNR. 

 

II. PREVIOUS METHODS 
1. STATIONARYWAVELET  TRANSFORM 

(SWT) 

WT provides not only about the frequency 

characteristics of the signal but also about the time 

characteristics of the signal. So, WT has been a 

popular and effective tool for signal processing. The 

wavelet decomposition can be described as iterative 

signal composition, using filter banks of low pass and 

high pass filters ( organized in a tree) with down 

sampling of their outputs. This decomposition tree 

structure so called dyadic transform [2],[10], in 

which decomposition of outputs of low pass filters is 

performed . 

It is known fact by experience that SWT [8] will 

give better results than simple signal processing 

method. In SWT outputs of decomposition filters in 

all decomposition levels are not down sampled. 

Interpolation errors that might occur during the 

reconstruction part can be avoided. We used the SWT 

in this study. 
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The no of decomposition levels used and 

impulse characteristics used of the initial low pass 

and high pass filters are the important parameters 

 

2. Wavelet Filtering Method: 

The simple Wavelet Filter is based on an 

appropriate adjustment of wavelet coefficients in the 

wavelet domain [10]. With regard to the character of 

image wavelet coefficients, it is effective to separate 

the interference and the signal via thresholding. 

Effective thresholding requires 1) to evaluate the 

right value of the threshold and 2) to choose the right 

methods of thresholding 

 

2.1) Threshold Level: We suppose that the corrupted 

signal x(n) is an additive mixture of the noise-free 

signal s(n) and the noise w(n), x(n) =s(n) + w(n), both 

uncorrelated, where n represents the discrete time (n 

= 0, 1, . . . , N − 1) and N is the length of the signal. If 

we transform the noisy signal x(n), using the linear 

dyadic SWT, into the wavelet domain, we obtain the 

wavelet coefficients ym(n) = um(n) +vm(n), where 

um(n) are the coefficients of the noise-free signal and 

vm(n) are the coefficients of the noise, and m is the 

level of decomposition which denotes the mth 

frequency band. 

The threshold levels for the modification of the 

wavelet coefficients should be set separately for each 

decomposition level m with respect to the noise level 

vm(n) (its standard deviation σνm). In the case of 

lower noise level, the threshold level is lower and the 

corruption of the noise-free signal is also lower. The 

issue of the wavelet thresholding is described in 

detail in [11]. 

There are many methods for estimating the 

optimal threshold values. Most of the methods 

assume white Gaussian noise and the decimated WT. 

They include, for example, the Universal threshold 

[12], Stein’s unbiased risk estimate threshold (SURE) 

[13], [14], or Minimax threshold [15]. However, 

these methods are always based on the standard 

deviation of the noise multiplied by a derived 

constant value. In our study, we use the SWT, and the 

suppressed noise characteristics. For the calculation 

of the threshold value, we also use the standard 

deviation of the noise multiplied by an empirical 

constant TM (the threshold multiplier). Setting this 

constant is not yet entirely clear and therefore it will 

be tuned later. The threshold levels λm can be 

described by the equation 

λm = TM · σνm                                                         (1) 

Where σνm is the standard deviation of the 

noise in the mth frequency band. 

In the case of setting the threshold too low, we 

risk the occurrence of noise artifacts. On the other 

hand, setting the threshold too high, we can damage 

the noise-free signal. In the cases where the noise 

dynamically changes its energy, fixed thresholds are 

failing. One of the possible solutions can be also to 

adaptively change the threshold level. This approach 

can be found in [16]. 

It is a robust estimate of the standard deviation of 

noise using the median; it was first introduced in [12] 

and used, for example, in [15], [17] and [18]                                          

σνm =             median (|ym|)                                    (2) 

                            0.6745 

If we estimate the standard deviation of noise using a 

sliding window, we obtain the time-dependent σνm 

(n). For the same reasons that were described earlier, 

we multiply the calculated standard deviation by the 

constant TM and obtain the time varying threshold 

λm (n) = TM · σνm(n)                                           (3) 

We need to ensure that the standard deviation of 

the noise calculated in a sliding window by (2) is not 

affected by the noise-free component of the signal. 

For this reason, we need to ensure that at any time the 

sliding window contains exactly one pixel. This is 

complicated in cases where the pixel rate is time 

variable and in that context the length of the RR 

interval is also varying. From the above, it follows 

that we should dynamically change the length of the 

sliding window to ensure that the calculation of the 

standard deviation of noise is correct.  

 

2.2) Thresholding Methods: Five thresholding 

methods are tested in this paper they are: hard and 

soft thresholding [12], hyperbolic [21], nonnegative 

garrote [22], and semisoft (firm) thresholding [23], 

[24] 

 

3. Wavelet wiener filtering method (WWF) 

Consider the block diagram of WWF method in 

Fig.1. The estimation of the noise free coefficients 

um (n) can be done from the coefficients ym (n), 

using the WWF method, which is based on Wiener 

filtering theory applied in the wavelet domain[7], 

[25]. 

 
Fig. 1. Block diagram of the WWF method. The 

upper path is used to estimate the noise-free signal 

ˆs(n); the lower path implements the Wiener filter in 

the wavelet domain 

 

The upper path of the scheme consists of 

four blocks: the wavelet transform SWT1, the 

modification of the coefficients in block H, the 

inverse wavelet transform ISWT1, and the wavelet 
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Transform SWT2. The first three blocks mentioned 

represent the classic Wavelet Filtering method 

described previously. The lower path of the scheme 

consists of three blocks: the wavelet transform 

SWT2, the Wiener filter in the wavelet domain HW, 

and the inverse wavelet transform ISWT2. 

               We get the estimate s~(n), which 

approximates the noise-free signal s(n), using the 

inverse transform ISWT1. This estimate is used to 

design the Wiener Filter (HW), which is applied to 

the original noisy signal x(n) in the SWT2 domain 

(lower path), via the Wiener correction factor [2], 

[26] 

                     (4) 

 

where ˆu^2m(n) are the squared wavelet 

coefficients obtained from  the estimate ˆs(n), and 

σ2νm(n) is the variance of the noise coefficients 

vm(n) in the mth band, estimated using (2).We 

process the noisy coefficients ym(n) in the HW block, 

using the previously described Wiener correction 

factor, to obtain the modified coefficients. 

                (5) 

 

The output signal y(n) is obtained by the ISWT2 

inverse transform of the modified coefficients 

λym(n).  

 

III. Proposed algorithm: 
 Adaptive wavelet wiener filtering method 

(AWWF) 

There are many parameters which are to be set 

manually in the WWF method. The decomposition 

level of WT, the thresholding method in the wavelet 

domain, the threshold multiplier and the wavelet 

filter banks used in SWT1 and SWT2 transforms are 

the most important ones. The great influence on the 

filtering results will be based on appropriate setting 

of the input parameters. But it is not clear which 

parameters should be used for ECG signal denoising.  

Moreover, it is obvious that for different noise levels 

present in the input signal different settings of the 

input parameters are suitable. Therefore, a robust 

filtering algorithm should be changing its parameters 

depending on the actual amount of noise. 

We improved theWWFmethod by adding the 

block for noise estimate (NE), as can be seen in Fig. 

2. 

 

  

 
Fig.2. Block diagram of the AWWF method. The 

most important block is NE, where the SNR is 

estimated. According to this estimate all the relevant 

parameters are set. 

 

This block needs two inputs: the first is the noisy 

signal x (n) and the second is the estimate of the 

noise-free signal y (n) obtained by the WWF method 

with universal parameters. The difference of these 

two signals gives an estimate of the input 

noise and we can calculate the SNR. The parameters 

in blocks SWT3, H3, ISWT3, SWT4 and ISWT4 are 

set up using the estimated SNRest value. 

The remaining problem is that we do not know 

yet the correct setting of the individual blocks. 

Therefore, it was necessary to find these parameters 

individually for different levels of 

Interference 

 

3.1) Modification of long term records: 

It is clear from the above that with a sudden 

change in the SNR within the image it is suitable to 

change the filter settings in order to maximize the 

filtering performance. The probability of such 

changes is obviously higher for long-term signals, 

e.g., the Holter signals. 

                        The proposed AWWF algorithm has 

an important block i.e., NE block which monitors the 

time dependence of SNR within the image and using 

set of  thresholds, the changes are detected. Therefore 

with an approximately constant level of noise, the 

signal is divided in to two segments. The AWWF 

method uses for each segment the appropriate 

parameters and the filtered segments are again 

reconnected.  

 

IV. Parameter setting for AWWF 
The five most important parameters are:  the 

level of the decomposition for values from 2 to 6, the 

thresholding method (Hard, Hyperbolic, N Garrote, 

Semisoft, Soft), the threshold multiplier for values 

from 1 to 20, the set of filter banks for transforms 

SWT3 and SWT4 (we tested 53 filter banks, which 

are present in the MATLAB Wavelet Toolbox); these 

are given in the below table I 
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TABLE I 

       BASIC GROUPS OF THE INVESTIGATED 

PARAMETERS 

 
 

V. Algorithm for finding suitable 

parameters value: 
Our aim was to maximize the average SNR 

improvement. The problem is not easy, because some 

parameters are continuous, some are discrete and 

some are highly discontinuous. We tried to use 

genetic algorithms for the optimization, similar to 

what was done in [5], but the results obtained were 

not relevant. We decided to use our own approach. 

We gradually changed the parameters in all groups 

and observed the SNR improvement. The step-by-

step process is as follows. 

1) Set the SNRin. The whole algorithm is 

performed successively for SNRin from −5 to 55 

dB in steps of 5 dB. 

2) Set up groups of investigated parameters (see 

Table I). At the beginning, there are always all 

the parameter values we are interested in (a total 

of 131 values). According to the number of 

parameters, we set the number of currently tested 

signals (NTS). The smaller the number of 

parameters, the more signals can be used with 

the same time requirement. 

3) Randomly select the first combination of the 

parameters from Table I (highlighted in bold). 

4) Generate a random EMG noise according to (7). 

5) Gradually change the decomposition level from 

2 to 6 choose the decomposition level at which 

we achieved the highest average SNR 

improvement, and gradually do the same with 

the thresholding method, the threshold multiplier 

and both WF banks. Finally, we get the first 

iteration (see the second line in Table II). 

6) Repeat steps 4) and 5) and get other iterations 

until any of the following conditions is satisfied: 

a) five identical successive iterations; b) seven 

identical iterations everywhere (used in Table 

II); and c) ten identical parameters in each 

column 

 

 

 

 

 

 

 

 

                Table II     

7) Return to step 3) and repeat it three times, with 

another randomly selected combination of the 

parameters. The parameters in Table I will 

essentially create a five dimensional parametric 

space. If we start the iteration process more than 

once, each time from another place in this space, 

and always find the same maximum, the 

probability we have found the global maximum 

will increase. 

8) The next step is the elimination of the parameters 

with allow or no presence in the iterations (see 

Table II). If we get rid of clearly unsuitable 

parameters, we can use more signals for further 

testing in the same computational cost. 

Determine the relative counts of each parameter 

in each 

Column. 

9) Return to step 2). Now we have fewer 

parameters and can use more signals. Repeat this 

procedure until we cannot exclude any further 

parameter in step 8), or until only one parameter 

is left in each column 

10) We get the set of advisable parameters for a 

particular value of SNR (see Table III). We 

return to step 1) and repeat the procedure for 

other desired levels of the input noise to 

complete Table III. 

                          

                                   Table III 
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VI. RESULTS 
                                Table IV 

Sigma(σ)              

20 
                 

30 

        40                      

50 

Pre-

PSNR 

    

22.11 

   18.58    16.08    14.15 

Post-

PSNR 

   31.53    29.70    28.41    27.43 

 

Pre-PSNR is the peak signal-to-noise ratio before 

applying AWWF algorithm and post PSNR is the 

peak signal-to-noise ratio after applying the AWWF 

algorithm. In the above table we observe there is 

improvement in the PSNR after applying the AWWF 

algorithm. 

 

Input image: 

 
Image corrupted with noise: 

 

 
Output image: 

 

 
 

VII. Comparison: 
 

Consider the list of the methods that are tabulated 

below 

 

                                 Table V 

 
 

In table IV we can see the summary of the results. In 

the above table we found that the AWWF method 

provides the better results than the existing 

algorithms. 

 

VIII. Conclusion 
The proposed AWWF algorithm provides better 

filtering results than another tested algorithm based 

on simple wavelet Wiener filtering. It is evident from 

the results that the setting of suitable parameters 

value and their adaptation to the estimated noise level 

have a positive effect on the performance of the 

filtering algorithm. Our new algorithm is adaptive in 

two ways. The first adaptation lies in the division of 

the signal into individual segments, each with an 

approximately constant level of noise. These 

segments are filtered using parameters appropriate 

for the given noise level. These parameters are the 

decomposition level, filter banks, thresholding 

method, and threshold value. The second adaptation 

is within individual segments. It lies in adaptive 

setting of the threshold value based on the standard 

deviation of the noise at decomposition levels. It 

serves effective noise suppression at the less 

significant changes in the noise power. Due to these 

adaptive characteristics, our filter can deal with the 

dynamically changing noise. 
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